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Abstract. The paper describes panel utter analyses performed in the context of the develop-

ment of the �rst Brazilian satellite launcher (VLS). The development of the structural-dynamic

and aerodynamic formulations are presented, together with their coupling to obtain the aeroelas-

tic equations. Two di�erent approaches were used to describe the aerodynamic loading, namely

formulations based on the quasi-steady, linearized, small perturbation potential equation and on

1st-order piston theory. Results are presented for the VLS main aerodynamic fairing panels,

both at zero incidence and at angle of attack. The e�ect of the inclusion of the unsteady aerody-

namic terms in the aeroelastic results was also investigated. The overall conclusion of the study

indicates that the VLS payload shroud would be free from panel utter even with a considerable

reduction in the fairing panel thickness.
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1. INTR ODUCTION

The present work is concerned with panel utter analyses performed in the context of the

development of the �rst Brazilian satellite launcher, the VLS system. The VLS is a four-stage

vehicle in which the �rst stage is composed of four strap-on boosters around a central core. The

vehicle has a hammerhead-t ype payload shroud which is a con�guration known to be prone to

ow separation during the transonic or supersonic ight regimes. This observation, therefore,

also indicates that considerably higher structural loads could be present over the payload fairing

for these ight conditions. A schematic representation of the VLS system is presented in Fig.

1. The vehicle is being designed for the mission of launching small satellites, of the order of

150 to 200 kg, into low Earth orbit (LEO). Moreo ver, this vehicle is an integral part of a larger

program which has the goal of launching a Brazilian satellite, using a Brazilian-built rocket, from

a Brazilian launching site. The satellite development is the responsibility of Instituto Nacional

de Pesquisas Espaciais (INPE) whereas the launching site is the Alcântara Launching Complex

(CLA). The responsibility of designing and building the launcher itself falls with Instituto de

Aeron�autica e Espa�co (IAE) which, together with its industrial partners, should deliver the VLS

ready for launch.

The vehicle has been under development for a few years now and, recently, there was an

intensive effort to try to �nalize its aeroelastic clearance studies. In particular, as in the devel-

opment of any satellite launcher, panel utter analyses are an important issue to be considered.



Moreover, it is correct to state that aeroelastic considerations were not taken into account in the

original design studies and structural sizing of the vehicle. These considerations were treated as

afterwards veri�cations, which is also a fairly common procedure in many organizations. The

aspects which were mainly emphasized in the VLS aeroelastic clearance studies were transonic

buffeting for the central body payload shroud, classical utter and divergence of the vehicle �ns,

panel utter and vortex shedding at takeoff conditions. It should be emphasized that the �nal

Figure 1: Sketch of the VLS system.

VLS con�guration, as shown in Fig. 1, does not have �ns in the �rst stage boosters. However,

until recently, the primary con�guration under study was supposed to have those �ns and there

is no guarantee that future vehicle upgrades will not require the �ns.

The present paper describes one of these studies, namely the veri�cation of panel utter

stability for the vehicle main aerodynamic fairing, i.e., the payload shroud. The initial studies

for the VLS design indicated that the payload shroud would be made with composite materials.

For several reasons, which are beyond the scope of the present paper, there was a decisison to

use standard aeronautical construction for the fairing. Hence, it currently has several longerons

and stiffners which are riveted to the aluminum skin. Stiffners and longerons are also made of

aluminum. The overall fairing construction allows its modeling as composed of several rectan-

gular patches supported at the longerons and stiffners. The at patches are uniform, isotropic,

thin and simply supported on the four edges. The aerodynamic loading is based on the two-

dimensional \static approximation" in the �rst instance including the e�ect of yaw of the panel.

Then, unsteady terms are included in the aerodynamic formulation. The approximate solution

is obtained by using Lagrange's equations and oblique coordinates. Numerical results indicate

that, even at the maximum dynamic pressure ight condition and if the plate thickness were

reduced in half, the utter dynamic pressure would still be considerably higher than the actual

ight dynamic pressure.

2. STRUCTURAL FORMULATION

The parallelogrammic at panel simply supported all around is assumed to be uniform,

thin, and isotropic. Damping is neglected and the classical, small-deection, thin-plate theory

is used in the structural formulation. The e�ect of yaw of the parallelogramic panel is taken

into account. Lagrange's equations are used to derive the equations of motion of the aproximate

solution. The potential energy of the system is written based on the strain energy of deformation

of the plate and the work of the mid-plane forces. The panel is exposed to supersonic ow on

one side and to still air on the other. Figure 2 shows the geometry of the panel, the system of



oblique coordinates and the aerodynamic ow. The use of the classical small-deetion theory

allows the governing equation for the problem to be written as

Dr4W +NxW;xx + 2NxyW;xy +NyW;yy + �hW;tt = `(x; y; t); (1)

where D = Eh3=12(1� �2) is the sti�ness of the plate, r4 is the biharmonic operator in oblique

coordinates, � is the mass density of the material, h and W are the thickness and transverse

displacement of the panel, respectively, and `(x; y; t) is the aerodynamic loading normal to the

middle plane of the panel. Moreover, Nx, Nxy and Ny represent the structural loading at the

mid-plane of the plate. Subscripts after a comma denote differentiation. The boundaries of

Figure 2: Parallelogramic panel and oblique coordinate system for the panel in yaw.

the panel, in oblique coordinates, are x1 = 0, x1 = a, y1 = 0 and y1 = b. The rectangular

coordinates and the oblique coordinates are related by the expressions x1 = x� y tan	 and

y1 = y sec	, where 	 is the angle of skew of the panel.

3. AEROELASTIC FORMULATION

The aeroelastic equations for the problem are derived using two aerodynamic theories. The

�rst one considers a quasi-steady aerodynamic formulation based on the linearized small per-

turbation potential equation. The second one uses a 1st-order piston theory which includes

unsteady aerodynamic e�ects.

3.1 Quasi-steady aerodynamic formulation

The equations of motion of the system are obtained by the use of Lagrange's equations
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From thin-plate theory, the potential energy of the system U consisting of the strain energy of

deformation of the plate expressed in oblique coordinates and the work of the mid-plane forces

is given by

U =
D

2
cos	

Z
b

0

Z
a

0

[(r2W )2 � 2(1� �) sec2	(W;x1x1
W;y1y1

�W 2

x1y1
)]dx1dy1

�
1

2
cos	

Z
b

0

Z
a

0

[NxW
2

;x1
+Ny sec

2	(W;y1
� sin	W;x1

)2 (4)

+ 2Nxy sec	W;x1
(W;y1

� sin	W;x1
)]dx1dy1;



where r2W = sec2	(W;x1x1
� 2 sin	W;x1y1

+W;y1y1
) is the Laplacian in oblique coordinates

applied toW . The quasi-steady aerodynamic loading, based on the linearized small perturbation

potential equation (Bisplingho�, Ashley and Halfman, 1955, and Liepmann and Roshko, 1957)

is given by
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2q
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where q = 1

2
�aU

2 is the dynamic pressure, �a and U are, respectively, the air density and the

mean ow velocity, and � =
p
(M2 � 1), with M denoting fhe freestream Mach number.

The deection of the panel can be written as

W (�; �; t) =
kX

i=1

qi(t) �i(�; �); (6)

where � = x1=a and � = y1=b are nondimensional oblique coordinates. Thus, the kinetic and

strain energies expressions can be rewritten, respectively, as
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where mij and kij are presented in Durvasula (1966).

Taking into account the e�ect of yaw of the parallelogramic panel, as shown in Fig. 2,

the aerodynamic loading, considering a quasi-steady formulation based on the linearized small

perturbation potential equation, is written, in normalized oblique coordinates, as

`(�; �; t) =
�2q
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a

b
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where � is the angle between the ow direction and the axis x (yaw angle). The generalized

forces Qi(t) can be calculated considering the virtual work of the aerodynamic loading as:
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Substituting the expressions for the kinetic energy T, strain energy U and generalized forces Qi

into the Lagrange's equations (2), one can write

[ ~M ]f�qg+ [ ~K]fqg = [~L]fqg: (11)

At the critical utter condition, as the motion is simple harmonic, the modal deformations can

be written

fqg = RefCige
i!t; (12)

where fCig is the vector of constants to be determinated and ! is the frequency of oscillation.

Substituting this equation into Eq. (11) the resulting system of algebraic homogeneous equations

is

[[ ~K]� !2[ ~M ]� [~L]]fCg = f0g: (13)



For the simply supported panel, the boundary conditions are W = 0 and Mn = 0 all along the

boundary. For the polygonal boundary, the foregoing boundary conditions reduce toW = 0 and

r2W = 0 on the boundary. For the assumed displacement mode function �i one can take

�i(�; �)� �mn(�; �) = sinm�� sinn�� ; with

(
m = 1; 2; � � � ;M

n = 1; 2; � � � ;N
(14)

and also, accordingly, kij � kmnrs, mij � mmnrs, Qi � Qmn and Lij � Lmnrs. Thus, Eq. (13)

can be rewritten as
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!2 and [Emnrs] is de�ned in Damilano and Azevedo (1998). Also, the

dynamic pressure parameter, present in [Emnrs], is given by Q� = 2qa
3
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.

The matrix equation (15) corresponds to the general utter problem of a parallelogrammic

panel simply supported all around acted upon by uniform in-plane loads Nx, Ny, and Nxy.

This work, however, is concerned with the panel utter of unstressed panels, i.e., with Nx, Ny,

and Nxy all equal to zero. The eigenvalues k
�2

of the matrix [Emnrs] represent the frequencies

of vibration of the panel. For the static aerodynamic theory used, all eigenvalues of [Emnrs]

are real for suf�ciently small values of Q�. Actually, for Q� = 0, Eq. (15) refers to a free

vibration problem and the resulting eigenvalues correspond to the in vacuo frequencies of the

panel. Gradually increasing Q�, some eigenvalues approach each other and, for a certain value

of Q�, two roots coalesce forming an eigenvalue loop. Further increasing the value of Q�, these

two roots become complex. When the roots k
�2

become complex, the corresponding motion

clearly is a divergent oscillation. Thus, the value of Q� at which two eigenvalues coalesce de�nes

the critical value Q�

cr
for utter.

3.2 Aerodynamic formulation with piston theory

The aerodynamic loading, considering �rst order piston theory (Ashley and Zartarian, 1956),

can be written as
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The structural-dynamic formulation is still given by Eq. (1). Hence, the aerodynamic load-

ing, rewritten in terms of the dimensionless coordinates and considering the coordinate system

indicated in Fig. 2, can be expressed as
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The Qi(t) generalized forces, obtained from the virtual work performed by the aerodynamic

forces, can be written in this case as
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The equations describing the motion of the panel in terms of the modal coordinates can be

obtained, using Lagrange's equations of motion, as

[ ~M ] f�qg + [ ~K] fqg = [~L1] fqg + [~L2] f _qg . (20)

The present formulation does not allow a direct eigenvalue analysis, as performed in the previous

case, due to the presence of the modal velocities in Eq. (20). If one considers the transformation

of variables de�ned by q1 = q and q2 = _q, it is possible to rewrite the equations of motion in a

standard �rst-order form as(
_q1
_q2

)
=

"
[0] [I ]

[~L0
1
]� [ ~K0] [~L0

2
]

# (
q1
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)
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The various matrix terms in Eq. (21) were obtained from the matrices in Eq. (20) after appro-

priate normalizations. The interested reader is referred to Said, Azevedo and Damilano (1998)

for further details of this derivation. It is also possible to show (Said, Azevedo and Damilano,

1998) that these terms can be written as
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a1 �a

h �
[I ] ,
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1
]� [ ~K0] = �

D

a4 � h cos4	
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where [Emnrs] appeared originally in Eq. (15). If one considers that, at the critical utter

condition, the motion is of the form

fqg = RefCig e
! t , (23)

it is again possible to perform an eigenvalue-based stability analysis for the system. In this case,

the instability condition will be reached when the real part of any of the eigenvalues becomes

positive, since this will yield an exponentially growing amplitude of motion.

4. SOME VALIDATION RESULTS

The formulation described in Section 3.1 was validated based on numerical (Durvasula, 1966)

and analytical (Dowell, 1975) solutions, whereas the formulation presented in Section 3.2 was

partially validated, based on the same examples, however taking the terms of matrix [~L2] equal

to zero.

An evaluation of the e�ect of the unsteady aerodynamic terms present in the 1st-order piston

theory formulation was also performed. Results in graphical form are not presented here for the

sake of brevity. However, the calculations indicated that, all other parameters held �xed, the

lowest values of Q�

cr
correspond to the results obtained without including the unsteady terms,

i.e., using quasi-steady aerodynamics. Moreover, computations with 1st-order piston theory

used two di�erent values of freestream air density, namely �a = 0:600 kg/m3 and 1:228 kg/m3.

The results indicated that higher values of air density yield larger values of Q�

cr
. Therefore,

the conclusion of these analyses is that, for the present cases, the inclusion of unsteady e�ects

increases the utter dynamic pressure because the unsteady aerodynamic terms add damping

to the system. Moreover, higher air densities yield larger damping e�ects which, in turn, further

increase the utter dynamic pressure.

The results for a utter analysis using 1st-order piston theory and considering a panel with

a=b = 1, with air density �a = 1:228 kg/m3 and � = 0 deg., are presented in Fig. 3 in terms

of the root locus of the �rst eigenvalue that becomes unstable. One can observe that, as Q� is

increased, initially the real part of the eigenvalue is essentially constant. Further increase in Q�

makes the real part of the eigenvalue move towards the unstable right-hand semi-plane and, at

Q�

cr
= 5:9, there is the onset of utter for this case.
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Figure 3: Root locus for the �rst eigenvalue that becomes unstable with Nx = Ny = Nxy = 0

and 	 = � = 0.

5. FLUTTER ANALYSES FOR THE VLS MAIN FAIRING

A typical panel was chosen from the cylindrical region of the VLS main fairing for the

analyses. The rectangular panel is simply supported all around the boundary. The elastic

deformations of the support, i.e., the elastic deformations of the longerons and sti�ners, were

neglected. The panel to be analyzed is rectangular with a = 115 mm and b = 120 mm. For the

work herein described, �rstly a yaw angle of 0 deg. was used. Since the chosen typical panel

has sides parallel to the axes of the coordinate system, thus 	 = 0 deg. too. The calculations

were performed using 16 term series by takingM = 4 and N = 4, and with the mid-plane loads

Nx = Ny = Nxy = 0. The results, pictured in Fig. 4, showed coalescence between the 1st and

2nd frequencies for Q�

cr
= 5:11. If the vehicle ies with angles of attack di�erent from zero, it

would be equivalent to having the side panels with angle of yaw, �, with respect to the ow, also

di�erent from zero. In the VLS case, all along its trajectory, the angle of attack varies from 0 to

6 deg. As shown in the literature (Durvasula, 1966), and con�rmed by the results obtained, the

existence of yawing angles, in the range of 0 to 10 deg., when 	 = 0 deg. and a=b = 1, typically

leads to higher critical utter dynamic pressures. Thus, the results obtained for � = 0 were

considered in the study described as follows. The panel's material is aluminum with E = 70

GPa, � = 0:3, and thickness h = 1:0 mm. It is possible to write q=� as function of Q� by using

the expression

q

�
=

�4E

24a3(1� �2) cos4	
Q�h3: (24)

Then, substituting the value obtained for Q�

cr
into Eq. (24) results q=� = 1:05 � 106N/m2.

From the vehicle's ight data (Many authors, 1991) at time t = 42 s, the maximum dynamic

pressure is qmax = 9:28� 104N/m2 corresponding to a Mach number M = 2:383, which results

in q=� = 4:29� 104N/m2. The results clearly indicate a very safe vehicle operation, as far as

panel utter is concerned, since q=�, for the critical dynamic pressure parameter of the vehicle,

is almost 2 orders of magnitude larger than the actual value obtained with the vehicle ight

data. Moreover, if the panel thickness is reduced to 0:5 mm, the previous numerical procedures

will produce q=� = 1:31 � 105N/m2, which still represents a very stable condition, since the

result is about 3 times larger than the one that actually occurs during the ight of the vehicle.



0 20 40 60 80 100 120

Eigenvalues

0

1

2

3

4

5

6

D
y
n
a
m
ic
P
re
s
s
u
re
P
a
ra
m
e
te
r

Figure 4: Eigenvalues as function of the aerodynamic loading Q�.

Another approach to present the previously discussed results would be to plot the stability

region for the VLS main fairing for a �xed ight dynamic pressure, and as a function of the

ight Mach number and panel thickness. This is indicated in Fig. 5 for the case in which the

aerodynamic forces are calculated using the quasi-steady, small disturbances potential theory.

All the geometric and material data used in this case are the same as in the previous discussion.

For the present calculations, however, the point along the vehicle trajectory corresponding to 35

s after liftoff was considered, which yields a freestream dynamic pressure of 78:3 � 103 N/m2.

The points above the curve in Fig. 5 correspond to stable operation as far as panel utter is

concerned, whereas those below the curve are unstable points.

stable

unstable

VLS actual flight data

Figure 5: Stability region for the VLS payload shroud panels calculated using quasi-steady

aerodynamics (q = 78:3� 103 N/m2).

The actual point corresponding to the VLS payload shroud panels in the above conditions is

also indicated in Fig. 5. One can see that this point is well within the stable region. Moreover,

one can also observe that, all other parameters remaining constant, the panel thickness could be

reduced to approximately 0:4 mm without the occurence of panel utter for this ight condition.

Similar results are presented in Fig. 6, but for the aerodynamic loads computed using 1st-



order piston theory. As before, all other parameters and the ight dynamic pressure are held

stable

unstable

VLS actual flight data

Figure 6: Stability region for the VLS payload shroud panels calculated using 1st-order piston

theory (q = 87:0� 103 N/m2, �a = 0:447 kg/m3 and altitude = 9375 m).

�xed, whereas the Mach number and panel thickness are varied in order to determine the utter

stability limit. The dynamic pressure was �xed at 87:0�103N/m2 in this case, which corresponds

to ight at 40 s after lifto� for the VLS nominal trajectory. Again, the actual point corresponding

to the VLS ight at this condition is also shown in Fig. 6, and one can observe that the vehicle is

clearly stable for panel utter under such conditions. The dimensionless critical utter dynamic

pressure at this condition, calculated using piston theory, is Q�

cr
= 5:16. For the same conditions,

if the utter limit were computed using quasi-steady aerodynamics, the calculation would yield

Q�

cr
= 5:11. This behavior is in agreement with the results previously discussed, since the

addition of the unsteady terms adds damping to the system and, hence, increases the utter

speed.

A still di�erent form of trying to summarize the results of the present investigation is shown

in Fig. 7. In this case, the panel thickness was held �xed at h = 0:5 mm, and the dynamic

unstable

stable

VLS actual flight data

Figure 7: Comparison of utter dynamic pressure and actual ight dynamic pressure along the

VLS nominal trajectory for payload shroud panel thickness assumed as 0:5 mm.

pressure for the utter stability limit was calculated as a function of the ight Mach number.

All geometric and material parameters are equal to the values used in the previous analyses for



the VLS, and the atmospheric data is taken, as a function of the ight Mach number, from the

vehicle nominal ight trajectory. The panel thickness was considered at half of its actual value

for the VLS panels because the authors wanted to emphasize that, even with such a drastic

reduction on the fairing plate thickness, the vehicle was still safe with regard to panel utter.

The actual ight dynamic pressure for the VLS, as a function of Mach number, is also shown

in Fig. 7 for comparison purposes. It is clear from this �gure that the panel utter margin for

the payload shroud panels is very large throughout the relevant portion of the ight trajectory,

even with half the actual plate thickness. The quasi-steady aerodynamic formulation was used

for the calculations presented in Fig. 7.

6. CONCLUSIONS

Panel utter analyses were performed in the context of the development of the �rst Brazilian

satellite launcher (VLS). Lagrange's equations were used to derived the aeroelastic equations

for the problem. The aerodynamic loading was obtained based on two different aerodynamic

formulations, namely the quasi-steady linearized small perturbation equation and the 1st-order

piston theory. The panels are considered at, rectangular, isotropic, and simply supported

all along the boundary. The numerical results obtained indicate that the VLS payload shroud

should y free from panel utter even with a considerable reduction in the fairing panel thickness.

Moreover, the results also indicated that the inclusion of unsteady aerodynamic terms in the

formulation consistently increases the utter dynamic pressure for the present cases. Future

work will concentrate on the evaluation of the e�ect of the support exibility in the overall

panel utter stability.
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